加入收藏 | 设为首页 | 会员中心 | 我要投稿 好传媒网 (https://www.haochuanmei.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 运营中心 > 产品 > 正文

《 新华三人工智能发展报告白皮书 》全文

发布时间:2020-07-16 13:56:41 所属栏目:产品 来源:站长网
导读:副标题#e# 人工智能商业化加速将深刻改变人类社会 1、 从学术研究走向商业应用 人工智能最早可追溯到上世纪的四五十年代,被誉为“人工智能之父”的艾伦·图灵,在其论文《计算机器与智能》中,提出了非常著名的图灵测试,即被测试的机器是否能够表现出与人

  这几个问题就如同过去的绿皮车时代,车次少,乘客少,停车时间还长,那么上下车就没什么特别要求,大家慢慢上,慢慢下,反正时间很充裕。而现代高铁时代,车次多,有的地方甚至十五分钟左右一班车,车厢长了,乘客还都满员,每站停车时间几分钟,有些甚至1分钟,这样就要求有合理的上下车次序和分流等手段进行优化。

  针对AI对存储访问的特殊应用需求,同样需要针对性的进行优化。如将单点MDS(Metadata server,元数据服务器)进行横向扩展,形成MDS集群。MDS集群可以缓解CPU、内存压力,同时存储更多的元数据信息,并提高海量文件并发访问性能。

  这点像火车乘车进站以前的一个两个检票口,现在扩充到十个左右,减轻一两个检票口的压力,同时能够一起进出更多的乘客。针对小文件,可进行小文件内联、聚合,客户端读缓存等优化手段。这点可以理解为,老人小孩的,一家人一起提前检票进站。

  而“热点”访问问题,可采用目录镜像扩展或增加虚拟子目录的方式。同样映射到坐火车场景,可以理解为乘车时点餐服务。以前是大家都到餐车排队购买,现在是将二维码都贴到每个座位上,自己使用手机扫码就可以点餐,到时乘务员会按照座位把餐送来。

  综上,我们可以看到,真正的AI时代,不仅仅是其三要素数据、算法、算力技术发展就能满足的,同时对AI的运行环境也提出了更多挑战。当前是把AI效能发挥最大的一系列技术共同发展的时代,而非仅AI技术本身,相关技术要合力前行。无论是网络还是存储技术应走到更前面,在全球产业智能化转型中充当开路者的重要角色,为AI提供更顺畅的运行环境。

  3、 云边端协同,满足多样化的AI应用场景

  云计算的核心依靠云端超强的计算能力来完成计算要求很高的任务。进入云计算时代,由于云计算在成本、效益、规模、自动化和集中性等方面给企业带来的好处,大量人工智能服务完全部署在云上或者在很大程度上依赖于云。与此同时,随着物联网等技术的不断发展、数据的不断增加,如何在数据从生成到决策再到执行的整个过程中,保持尽可能小的延迟,就显得尤为关键。在一个只有“云”的世界中,数据可能要传输几千甚至上万公里,较大的延迟是在所难免的。

  对于一些时延敏感的人工智能应用场景,如自动驾驶汽车,对实时性要求极高,纯粹依靠云端的能力是难以满足的。另外,一些数据敏感的场景中,将数据上传到云端进行智能计算,也会面临一定程度的风险。云端服务在这些人工智能场景中的应用效果大打折扣,而边缘计算则可以有效解决这一问题。

  边缘计算作为云计算的延伸拓展,是一种分布式处理和存储的体系结构,它更接近数据的源头。它是将计算任务从数据中心迁移到靠近数据源的边缘设备上,因此它更擅长处理实时性、安全性要求较高的计算任务。基于边缘计算的方式,大大降低了网络延迟,处理数据更加快速,支持企业更快更好的做出决策。

7.png

▲边缘计算模型在人工智能应用场景中,将一些重量级的AI训练任务,或者对时延不敏感的任务,放置在云上进行,而将一些轻量级、或者对时延敏感、或者对数据安全有要求的AI计算任务,下沉到边缘设备或者终端设备中执行,通过边缘、终端和云端协同来实现快速决策、实时响应。在万物智联时代,只有云、边、端紧密协同工作,才能更好地满足各种AI应用场景的需求,从而最大化AI的价值。

  云边端协同工作将成为人工智能应用部署的重要方式,可以满足云端AI短板,即时延或数据安全等方面,为支持更多有严苛要求的AI应用场景铺平道路,提升应用效果。

8.png

▲云边协同的智能安防应用在智慧安防场景中,传统方式下需要将大量摄像终端采集到的视频数据,通过网络直接传输至云端或服务器进行存储和处理,不仅加重了网络的负载,也难以满足业务低时延快速响应的需求。通过增加边缘计算节点,将摄像采集终端采集的数据汇聚到边缘节点,从而有效降低网络传输压力和业务端到端时延。

  此外,智慧安防与人工智能相结合,在边缘计算节点上搭载AI人工智能视频分析模块,面向智能安防、智慧安防、轨迹跟踪、多维特征识别等AI典型业务场景,以低时延、大带宽、快速响应等特性弥补当前基于云端AI的视频分析中产生的时延大、用户体验较差的问题,实现本地分析、快速处理、实时响应。

9.png

▲云边协同的智能水利应用在智慧水利场景中,5G、智慧安防、边缘云和AI分析紧密结合,可以智能的识别出水利业务中的异常场景(河道漂浮物、钓鱼、游泳、非法采砂等),做到无人值守,实时告警。采用边缘计算(MEC)的网络结构在河道附近部署无线摄像头,在运营商本地机房部署MEC平台。

  实时性要求高的业务部署在边缘云,其他业务部署在中心云,实现云边协同。视频流经MEC分流后,将流量进行本地化分流,在本地完成AI智能分析,实施将告警信息上送中心云。在本地进行业务流量的分流和处理,不仅提高了响应速度,而且减轻对运营商核心网络的数据传输压力。

  在智能家庭场景中,边缘计算节点通过各种异构接口就近汇聚、存储和处理边缘节点上的各类异构数据,执行AI任务,对敏感数据就地处理,不出本地,有力地保护数据隐私,同时将处理后的非敏感数据统一上传到云平台。用户不仅仅可以通过网络连接边缘计算节点,对家庭终端进行智能控制,还可以通过访问云端,对过往非敏感数据进行访问。

  在智慧交通场景中,汽车作为边缘计算节点,通过集成的采集装置采集实时数据,并与路侧边缘节点进行交互。边缘计算节点进行视频的就地处理和识别,将识别的车辆和位置信息通过5G等通信手段回传到云计算中心。云计算中心通过大数据和人工智能算法,为边缘节点、交通信号系统和车辆下发合理的调度指令,从而提高交通系统的运行效率,最大限度的减少道路拥堵。

  4、人工智能应用普及,安全备受关注

(编辑:好传媒网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读