学大数据要学哪些算法_终于明白如何学习大数据技术
如果说R语言是一个神经质又可爱的高手,那么Python是它随和又灵活的表兄弟。作为一种结合了R语言快速对复杂数据进行挖掘的能力并构建产品的更实用语言,Python迅速得到了主流的吸引
python 如果说R语言是一个神经质又可爱的高手,那么Python是它随和又灵活的表兄弟。作为一种结合了R语言快速对复杂数据进行挖掘的能力并构建产品的更实用语言,Python迅速得到了主流的吸引力。Python是直观的,并且比R语言更易于学习,以及它的生态系统近年来急剧增长,使得它更能够用于先前为R语言保留的统计分析。 “这是这个行业的进步。在过去的两年时间中,从R语言到Python已经发生了非常明显的转变,”Butler说。 在数据处理中,在规模和复杂性之间往往会有一个权衡,于是Python成为了一种折中方案。IPython notebook和NumPy可以用作轻便工作的一种暂存器,而Python可以作为中等规模数据处理的强大工具。丰富的数据社区,也是Python的优势,因为可以提供了大量的工具包和功能。 美国银行使用Python在银行的基础架构中构建新的产品和接口,同时也用Python处理财务数据。“Python广泛而灵活,因此人们趋之若鹜,”O’Donnell说。 不过,它并非最高性能的语言,只能偶尔用于大规模的核心基础设施,Driscoll这样说道。 Flume(日志收集工具) Cloudera开源的日志收集系统大数据算法,具有分布式、高可靠、高容错、易于定制和扩展的特点。 它将数据从产生、传输、处理并最终写入目标的路径的过程抽象为数据流,在具体的数据流中,数据源支持在Flume中定制数据发送方,从而支持收集各种不同协议数据。 同时,Flume数据流提供对日志数据进行简单处理的能力,如过滤、格式转换等。此外,Flume还具有能够将日志写往各种数据目标(可定制)的能力。 总的来说,Flume是一个可扩展、适合复杂环境的海量日志收集系统。当然也可以用于收集其他类型数据 Mahout(数据挖掘算法库) Mahout起源于2008年,最初是Apache Lucent的子项目,它在极短的时间内取得了长足的发展,现在是Apache的顶级项目。 Mahout的主要目标是创建一些可扩展的机器学习领域经典算法的实现,旨在帮助开发人员更加方便快捷地创建智能应用程序。 Mahout现在已经包含了聚类、分类、推荐引擎(协同过滤)和频繁集挖掘等广泛使用的数据挖掘方法。 除了算法,Mahout还包含数据的输入/输出工具、与其他存储系统(如数据库、MongoDB 或Cassandra)集成等数据挖掘支持架构。 Oozie(工作流调度器) Oozie是一个可扩展的工作体系,集成于Hadoop的堆栈,用于协调多个MapReduce作业的执行。它能够管理一个复杂的系统,基于外部事件来执行,外部事件包括数据的定时和数据的出现。 Oozie工作流是放置在控制依赖DAG(有向无环图 Direct Acyclic Graph)中的一组动作(例如,Hadoop的Map/Reduce作业、Pig作业等),其中指定了动作执行的顺序。 智能对象设计 Navicat提供一个直观和设计完善的用户界面,用于创建、修改和管理资料库的所有对象,例如表、视图、函数或过程、索引、触发器和序列。我们的表设计器帮助用户创建和修改数据库的表,让设置高级选项,如关系、限制、触发器和更多。 简化数据编辑 使用Navicat浏览和修改数据,插入、编辑、删除数据或复制和粘贴记录到数据表形式的数据编辑器,Navicat将运行相应的命令(例如 INSERT或UPDATE),免除写复杂的SQL。广泛的数据编辑工具令编辑工作更为方便,例如外键查找、set/enum选择器和记录筛选。 简易SQL编辑 可以创建、编辑、运行查询和检视结果,自动完成代码功能不仅帮助用户完成输入查询,也可以保证快捷地输入无错误的代码。查询创建工具使用户创建和编辑查询而不需要有SQL的知识。SQL美化功能旨在提高工作效率,创建格式整齐的查询,提高查询的可读性。 无缝数据迁移 Navicat具有广泛的功能,配备了一套简单、易于使用的用户界面来管理和处理数据。数据同步:分析和迁移数据库或模式之间的数据,这样可以确保每个数据库保存相同的信息。 (编辑:好传媒网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |